DNA photorepair in echinoid embryos: effects of temperature on repair rate in Antarctic and non-Antarctic species.
نویسندگان
چکیده
To determine if an Antarctic species repairs DNA at rates equivalent to warmer water equivalents, we examined repair of UV-damaged DNA in echinoid embryos and larvae. DNA repair by photoreactivation was compared in three species Sterechinus neumayeri (Antarctica), Evechinus chloroticus (New Zealand) and Diadema setosum (Tropical Australia) spanning a latitudinal gradient from polar (77.86 degrees S) to tropical (19.25 degrees S) environments. We compared rates of photoreactivation as a function of ambient and experimental temperature in all three species, and rates of photoreactivation as a function of embryonic developmental stage in Sterechinus. DNA damage was quantified from cyclobutane pyrimidine dimer (CPD) concentrations and rates of abnormal embryonic development. This study established that in the three species and in three developmental stages of Sterechinus, photoreactivation was the primary means of removing CPDs, was effective in repairing all CPDs in less than 24 h, and promoted significantly higher rates of normal development in UV-exposed embryos. CPD photorepair rate constant (k) in echinoid embryos ranged from 0.33 to 1.25 h(-1), equating to a time to 50% repair of between 0.6 and 2.1 h and time to 90%repair between 3.6 and 13.6 h. We observed that experimental temperature influenced photoreactivation rate. In Diadema plutei, the photoreactivation rate constant increased from k=0.58 h(-1) to 1.25 h(-1), with a Q(10)=2.15 between 22 degrees C and 32 degrees C. When compared among the three species across experimental temperatures (-1.9 to 32 degrees C), photoreactivation rates vary with a Q(10)=1.39. Photoreactivation rates were examined in three developmental stages of Sterechinus embryos, and while not significantly different, repair rates tended to be higher in the younger blastula and gastrula stages compared with later stage embryos. We concluded that photoreactivation is active in the Antarctic Sterechinus, but at a significantly slower (non-temperature compensated) rate. The low level of temperature compensation in photoreactivation may be one explanation for the relatively high sensitivity of Antarctic embryos to UV-R in comparison with non-Antarctic equivalents.
منابع مشابه
Temperature-oxygen interactions in Antarctic nudibranch egg masses.
The Southern Ocean is one of the coldest, most stable marine environments on Earth and represents a unique environment for investigating metabolic consequences of low temperature. Here we test predictions of a new diffusion-reaction model of O(2) distributions in egg masses, using egg masses of the Antarctic nudibranch mollusk, Tritonia challengeriana. When warmed from -1.5 degrees to +1.5 degr...
متن کاملSouthern Ocean Echinoids database – An updated version of Antarctic, Sub-Antarctic and cold temperate echinoid database
This database includes over 7,100 georeferenced occurrence records of sea urchins (Echinodermata: Echinoidea) obtained from samples collected in the Southern Ocean (+180°W/+180°E; -35°/-78°S) during oceanographic cruises led over 150 years, from 1872 to 2015. Echinoids are common organisms of Southern Ocean benthic communities. A total of 201 species is recorded, which display contrasting depth...
متن کاملHigh macromolecular synthesis with low metabolic cost in Antarctic sea urchin embryos.
Assessing the energy costs of development in extreme environments is important for understanding how organisms can exist at the margins of the biosphere. Macromolecular turnover rates of RNA and protein were measured at -1.5 degrees C during early development of an Antarctic sea urchin. Contrary to expectations of low synthesis with low metabolism at low temperatures, protein and RNA synthesis ...
متن کاملEast Weddell Sea echinoids from the JR275 expedition
Information regarding the echinoids in this dataset is based on the Agassiz Trawl (AGT) and epibenthic sledge (EBS) samples collected during the British Antarctic Survey cruise JR275 on the RRS James Clark Ross in the austral summer 2012. A total of 56 (1 at the South Orkneys and 55 in the Eastern Weddell Sea) Agassiz Trawl and 18 (2 at the South Orkneys and 16 in the Eastern Weddell Sea) epibe...
متن کاملOcean acidification does not impact shell growth or repair of the Antarctic
21 Marine calcifiers are amongst the most vulnerable organisms to ocean acidification 22 due to reduction in the availability of carbonate ions for skeletal/shell deposition. 23 However, there are limited long-term studies on the possible impacts of increased 24 pCO2 on these taxa. A 7 month CO2 perturbation experiment was performed on one 25 of the most calcium carbonate dependent species, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of experimental biology
دوره 209 Pt 24 شماره
صفحات -
تاریخ انتشار 2006